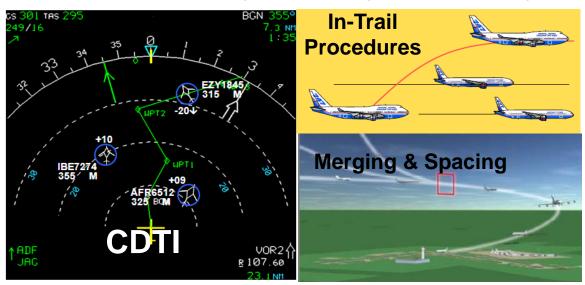


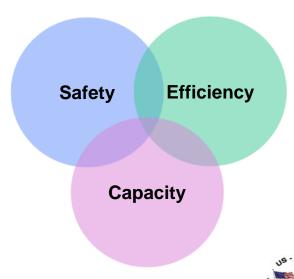
National Institutes of Aviation Management and Research (NIAMAR)
Rangpuri, Maharuli, New Delhi

Mike Grove January 28, 2010

Topics

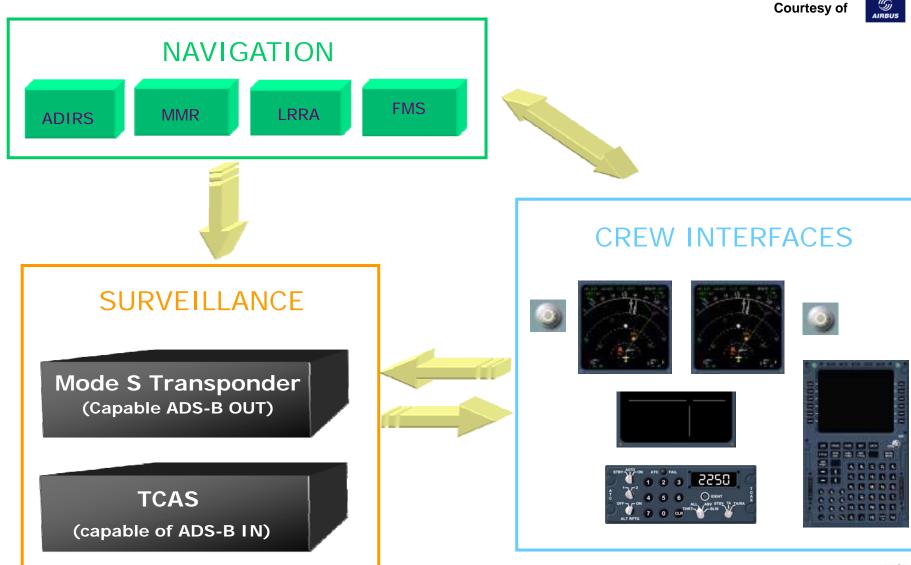
- ADS-B Aircraft Equipment & Architecture Summary
- Honeywell ADS-B Planning
- ADS-B In Honeywell Implementation on Airbus
- FAA/Honeywell ADS-B Programs
- Honeywell Participation in SESAR
- Wrap Up





ADS-B Aircraft Equipment & Architecture Summary

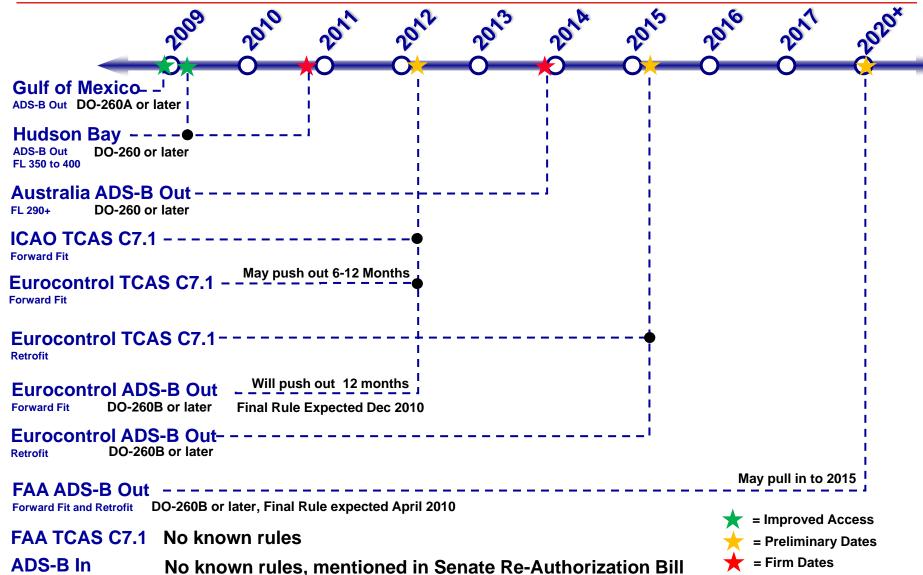
- ADS-B Out
 - Hosted in the Mode-S Transponder (or Universal Access Transceiver – USA General Aviation)
 - Augments Mode-S transmissions to include more detail and accuracy about aircraft position/velocity, based on GPS
- ADS-B In
 - Receive Capability Typically hosted within the TCAS
 - Traffic Display Requirements (Nav Display, MCDU, EFB, etc)
 - ADS-B traffic information is used by aircraft and ground stations to improve safety, efficiency, and capacity

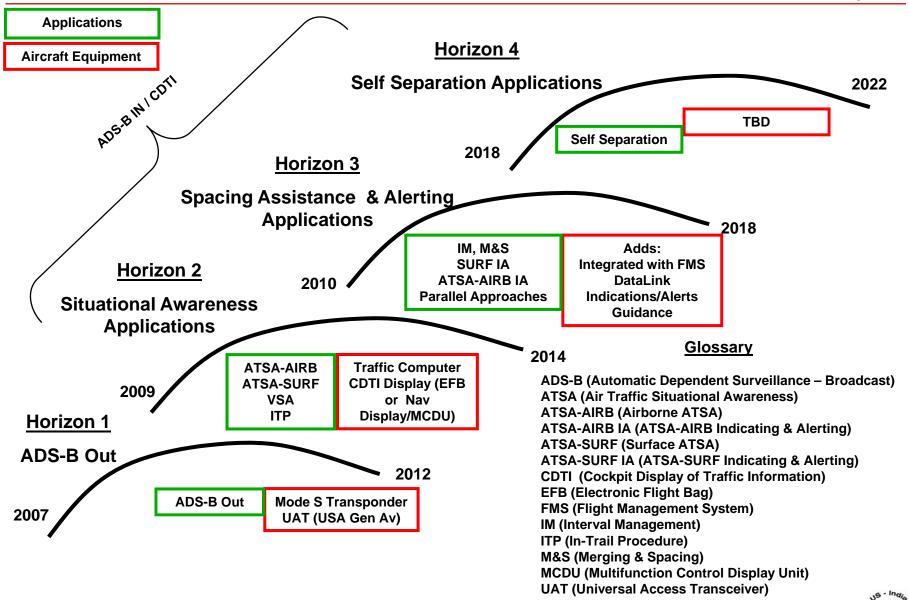


General ADS-B Architecture – Airbus Example

Honeywell

Courtesy of




Honeywell ADS-B Product Update Planning

ADS-B and TCAS Change 7.1 Timeline

ADS-B Out Progression Summary

DO-260 (TSO-C166):

- Initial ADS-B Out specification
- Transmits Surface / Airborne position and velocity twice per second with NUC which represents position integrity or position accuracy.
- Transmits Flight ID once every 5 seconds

DO-260A (TSO-C166a):

- Removes ambiguity in navigational uncertainty transmission improves accuracy of aircraft location
- Recommends an ADS-B On/Off flight deck switch

DO-260B (TSO-C166b): Available 1Q2010

- Improves integrity/accuracy quality information (reporting)
- Adds TCAS Resolution Advisories in progress
- Adds Barometric Pressure Setting
- Expands Mode A code squitter transmission from only North America to global
- Adds support for future Radar Airspace and Surface applications
- Adds a new single antenna class of transmitter/receiver to support General Aviation applications without requiring diversity
- Recommends an In-Air determination for all aircraft (GA was previously excluded)
- Recommends an independent ADS-B fail flight deck indication
- Discourages an ADS-B On/Off flight deck switch

Honeywell Product Planning – ADS-B Out

Honeywell

Product	Application	DO-260	DO-260A	DO-260B
Integrated Surveillance	Air Transport		Available	In Work
TRA-67	Air Transport	Available		In Work
Epic	Regional, Helicopter Business Aviation		Available	Planned
Primus II	Regional Business Aviation			In Work
MST-67	Regional Business Aviation			Planned
APEX	Business Aviation General Aviation			Planned
KT-73	General Aviation	Available (non-diversity)		Planned
MILACAS	Military Transport	Available - Military unique solution (planned DO-260 compliance)		

Broad Range of Products and Applications, all with ADS-B Out Available and/or Planned

Honeywell Product Planning – ADS-B In

Honeywell

Product	Application	ADS-B In	Comments
TPA-100	Air Transport Business Aviation	4Q09	Airborne Situational Awareness Visual Separation on Approach In Trail Procedure (ITP)
AESS	Air Transport	In Work	Airborne Situational Awareness Visual Separation on Approach In Trail Procedure (ITP)
TPU-66/67	Regional Business Aviation	Planned	Airborne Situational Awareness Visual Separation on Approach
KX/KTA / KMH	Business Aviation Gen Aviation Helicopter	Planned	Specific Plans and Functionality being Developed based on Customer Input

ADS-B In Operator Adoption is Driven by Business Case

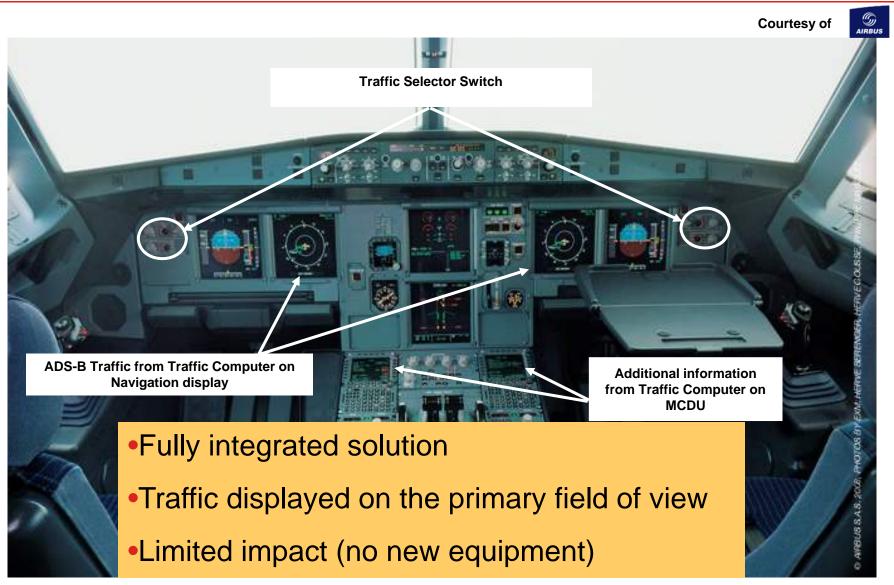
Honeywell ADS-B for Airbus Airborne Traffic Situational Awareness ATSAW Honeywell

ATSAW: ADS-B In for Airbus Aircraft

Honeywell

- Airborne Traffic Situational Awareness (ATSAW)
- Joint Program with Airbus since 2004
- Cockpit Display of Traffic Information (CDTI):
 - Aircraft ID, Ground Speed, Wake Vortex Data (AC Wt Category) When Traffic is Selected
- ATSAW Applications:

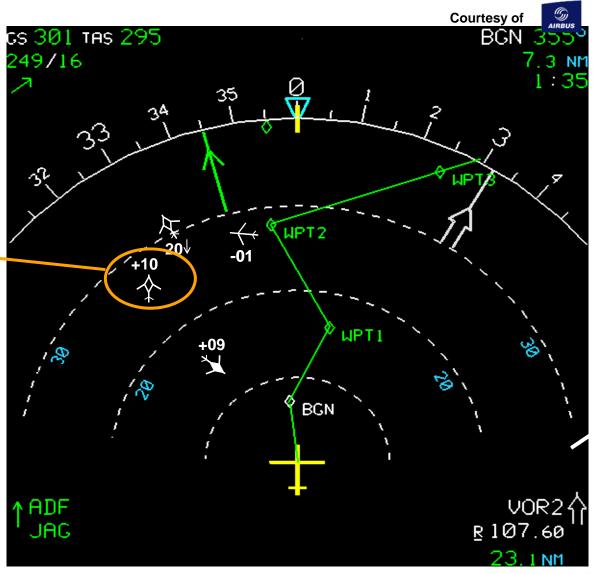
Step 2A:


- ATSA-AIRB: Airborne Traffic Situational Awareness
- ATSA-VSA: Visual Separation on Approach
- ATSA-ITP: In-Trail Procedure

Step 2B:

- ATSA-SURF: Surface Situational Awareness
- Selectable Option Forward Fit + Service Bulletin
 - Wiring Provisions since 2009
 - Traffic Selector, Traffic Computer Update, Display Updates

ATSAW in A320/A340 cockpit

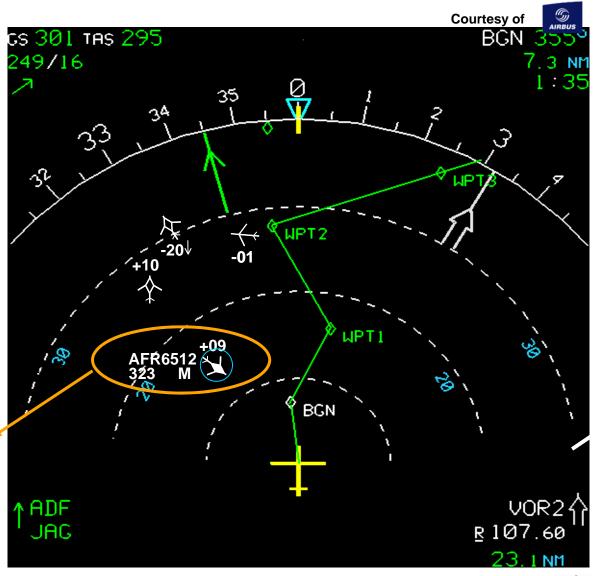

ATSAW: NAVIGATION DISPLAY

Honeywell

By default

- Position
- Orientation
- Relative Altitude
- Vertical Tendency

Correlation with TCAS information

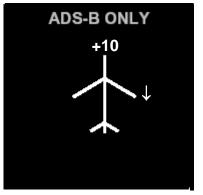


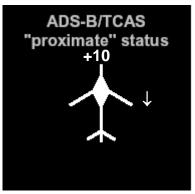
ATSAW: NAVIGATION DISPLAY

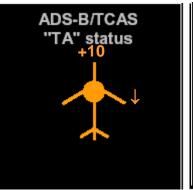
Honeywell

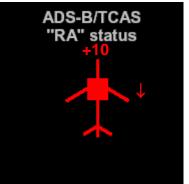
The aircraft is highlighted using a traffic selector switch located in the cockpit

- Default information
- A/C ident
- Ground Speed
- Wake Vortex category




ADS-B can provide


Courtesy of



- more information
- wider range (up to 250 NM) than current TCAS is currently capable to provide (40 to 80 NM).
- intruders direction represented by an oriented symbol
- Merge TCAS and ADS-B when both available to provide a unique traffic symbol to the flight crew

Page 17

ATSAW: Mulftifunction Cockpit Display Unit (MCDU)

Honeywell

Courtesy of

- Traffic pages on MCDU
- Additional information for use during Cruise
- Special Pages for In-Trail Procedures

FAA Sponsored Honeywell ADS-B Industry Programs

Background

The Aviation Rulemaking Committee (ARC)

Directed SBS program to examine operational benefits of ADS-B being realized before compliance with nationwide ADS-B mandate

Objective

- Develop globally accepted, airborne ADS-B applications providing operational benefits prior to required compliance with the ADS-B mandate
- Accelerate understanding and acceptance of airborne ADS-B
- Provide a growth path to future applications

Approach

 Conduct operational evaluation of airborne ADS-B applications ability to enhance operations

Establishing Requirements, Encouraging Development, Validating Performance, and Demonstrating Value

....Keys to Success

FAA/Honeywell ATSA SURF IA Demonstration Program

- Aircraft Surface Conflict Detection and Cockpit Alerting
- Concept: Supplement current flight crew procedures for safe operation on and near the runway by providing an on-board system that includes:
 - Electronic map of the airport surface
 - Relevant surface and airborne traffic
 - Indications of runway occupancy during normal operations
 - Cautions and warnings for predicted collisions with aircraft or vehicles on the runway surface

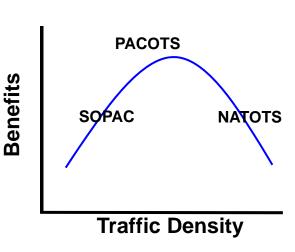
Sixteen-month program started 11/2008

- Accelerate RTCA SURF IA standards development by producing an Operational Performance Assessment and Operational Safety Assessment
- ➤ Develop display concepts and indication and alerting algorithms
 - Honeywell human factors evaluation will include JetBlue Airways and Alaska Airlines pilots
 - Honeywell is keeping Boeing appraised as we go
- Prototype display, surveillance and alerting functionality
 - Honeywell will use King Air and Sovereign test aircraft
- Demonstrate the system
 - Honeywell will demonstrate at Seattle-Tacoma International airport (SEA) and Snohomish County Paine Field airport (PAE)

In-Trail Procedures Operational Evaluation

Courtesy of FAA

Goals

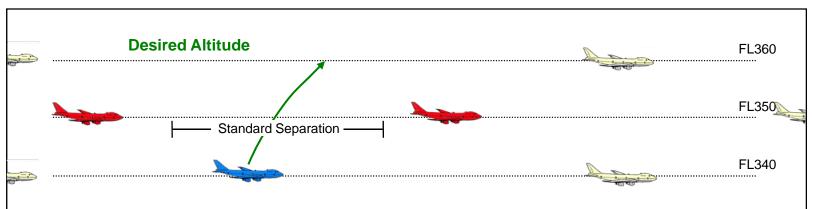

Employ ADS-B ITP in limited, oceanic air carrier operations

Objectives

- Validate operational performance of ADS-B ITP
- Validate economic benefits of ADS-B ITP
- Establish framework for global implementation of ADS-B ITP and follow-on airborne ADS-B applications

Location

- Potential locations included SOPAC, PACOTS, NATOTS
- SOPAC appears to be a good initial implementation region
 - Favorable business case
 - Straight forward implementation
- Future migration to the PACOTS



Motivation for ADS-B In-Trail Procedures (ITP)

Honeywell

Courtesy of FAA

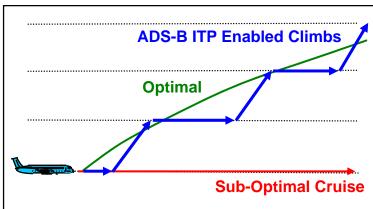
NEED -

CHALLENGE

OPPORTUNITIES

Altitude Changes required for better fuel economy, winds, and ride quality

The combination of locally dense traffic and large separation minima limits altitude changes


Use airborne ADS-B applications to enable altitude changes otherwise blocked by conventional operations

FAA/UAL/Honeywell ITP Program

- Joint FAA/UAL/Honeywell Program
 - Demonstrate operational benefits enabled by the ADS-B In, In Trail Procedures
 - Honeywell is developing, integrating, and <u>certifying</u> complete ITP avionics capability to be installed on United Airlines 747-400
- Avionics system consists of:
 - Honeywell Traffic Computer, TPA-100B with ADS-B In and ITP capability
 - Honeywell Transponder, TRA-67B with ADS-B Out capability
 - Class 3 EFB running Honeywell ITP display software
- United Airlines will operate approximately 12 Honeywell ITP avionics equipped 747-400 aircraft in the South Pacific (SOPAC) route for a 1 year Operational Evaluation

Example Plan View Traffic Display

Example ITP Traffic Display

Single European Sky ATM Research Program – Honeywell Participation

Single European Sky ATM Research (SESAR)

Honeywell

≻Honeywell Program Participation:

- Surface Situational Awareness and Traffic Alerting
 - Algorithms and simulator analysis
- Merging and Spacing
 - Traffic Computer prototype for lab and flight testing
- 1090 MHz Capacity and Future ADS-B Requirements
- Future TCAS Enhancements

> Program Extends from 2009 through 2020

Working Toward Harmonization of SESAR and NextGen

Wrap Up

Industry Opportunities for India

ADS-B Out

- Converge on Timing and Requirements
- Harmonization with US, Canada, Europe, Australia, etc
- Incentivize Equipage for Early Adoption (Preferred Routing?)
- Accelerate Ground Infrastructure

ADS-B In

- Identifying Criteria and Procedural Changes that Enhance Value
- Incentives to Help Close the Business Case
- Accelerating Implementation and Availability of Ground Support Infrastructure

Glossary

ADIRS (Air Data Inertial Reference System)

ADS-B (Automatic Dependent Surveillance – Broadcast)

AESS (Aircraft Environment Surveillance System)

ARC (Aviation Rulemaking Committee)

ATM (Air Traffic Management)

ATSA (Air Traffic Situational Awareness)

ATSA-AIRB (Airborne ATSA)

ATSA-AIRB IA (ATSA-AIRB Indicating & Alerting)

ATSA-SURF (Surface ATSA)

ATSA-SURF IA (ATSA-SURF Indicating & Alerting)

CDTI (Cockpit Display of Traffic Information)

EFB (Electronic Flight Bag)

FMS (Flight Management System)

IM (Interval Management)

ITP (In-Trail Procedure)

LRRA (Low Range Radio Altimeter)

M&S (Merging & Spacing)

MCDU (Multifunction Control Display Unit)

MMR (Multi-Mode Receiver)

NOPAC (North Pacific)

NUC (Navigation Uncertainty Category)

PACOTS (Pacific Organized Track System)

RA (Resolution Advisory)

SBS (Surveillance Broadcast Services)

SESAR (Single European Sky ATM Research)

SOPAC (South Pacific)

TA (Traffic Advisory)

TCAS (Traffic Alert & Collision Avoidance System)

UAT (Universal Access Transceiver)

Honeywell

www.honeywell.com